• Drug-target binding quantitatively predicts optimal antibiotic dose levels in quinolones 

      Clarelli, Fabrizio; Palmer, Adam; Singh, Bhupender; Storflor, Merete; Lauksund, Silje; Cohen, Ted; Abel, Sören; Abel zur Wiesch, Pia (Journal article; Tidsskriftartikkel; Peer reviewed, 2020-08-14)
      Antibiotic resistance is rising and we urgently need to gain a better quantitative understanding of how antibiotics act, which in turn would also speed up the development of new antibiotics. Here, we describe a computational model (COMBAT-COmputational Model of Bacterial Antibiotic Target-binding) that can quantitatively predict antibiotic dose-response relationships. Our goal is dual: We address a ...
    • Using chemical reaction kinetics to predict optimal antibiotic treatment strategies 

      Abel zur Wiesch, Pia; Clarelli, Fabrizio; Cohen, Ted (Journal article; Tidsskriftartikkel; Peer reviewed, 2017-01-06)
      Identifying optimal dosing of antibiotics has proven challenging—some antibiotics are most effective when they are administered periodically at high doses, while others work best when minimizing concentration fluctuations. Mechanistic explanations for why antibiotics differ in their optimal dosing are lacking, limiting our ability to predict optimal therapy and leading to long and costly experiments. ...
    • vCOMBAT: a novel tool to create and visualize a computational model of bacterial antibiotic target-binding 

      Tran, Vi Ngoc-Nha; Shams, Alireza; Ascioglu, Sinan; Martinecz, Antal; Liang, Jingyi; Clarelli, Fabrizio; Mostowy, Rafal; Cohen, Ted; Abel zur Wiesch, Pia (Journal article; Tidsskriftartikkel; Peer reviewed, 2022-01-06)
      Background: As antibiotic resistance creates a signifcant global health threat, we need not only to accelerate the development of novel antibiotics but also to develop better treatment strategies using existing drugs to improve their efcacy and prevent the selection of further resistance. We require new tools to rationally design dosing regimens from data collected in early phases of antibiotic ...